# ON THE CONSTRUCTION OF PERIODIC SOLUTIONS OF A NONAUTONOMOUS QUASILINEAR SYSTEM WITH TWO DEGREES OF FREEDOM 

## (K POSTROENIIU PERIODICHESKIKH RESHENII NEAVTONOMNOI KVAZILINEINOI SISTEMY S DVUMIA STEPENIAMI SVOBODY)

PMM Vol.27, No.2, 1963, pp. 365-369

```
            G. V. PLOTNIKOVA
                    (Moscow)
(Received June 14, 1962)
```

The following nonautonomous quasilinear system with two degrees of freem dom is considered

$$
\begin{align*}
& \ddot{x}+a x+b y=f(t)+\mu F(t, x, \dot{x}, y, \dot{y}, \mu)  \tag{0.1}\\
& \ddot{y}+c x+d y=\varphi(t)+\mu \Phi(t, x, \dot{x}, y, \dot{y}, \mu)
\end{align*}
$$

It is assumed that $f$ and $\varphi$ are continuous periodic functions of period $2 \pi$; the functions $F$ and $\varnothing$ are analytic with respect to the variables $x, \dot{x}, y, \dot{y}$ and $\mu$ and are continuous functions of $t$ having the same period $2 \pi$. The quantity $\mu$ is a small parameter. The coefficients $a, b$, $c$ and $d$ are constants. We shall consider the case of resonance $[1, p .107]$, When the fundamental equation

$$
\left(D^{2}+a\right)\left(D^{2}+d\right)-b c=0
$$

has two roots equal to $\pm i k$, where $k$ is an integer, and two other roots equal to $\pm i \omega$, where $\omega$ is not an integer.

The general solution of the generating system ( $\mu=0$ ) has the form

$$
\begin{gather*}
x_{0}^{*}(t)=A_{0} \cos k t+\frac{B_{0}}{k} \sin k t+E_{0} \cos \omega t+\frac{D_{0}}{\omega} \sin \omega t+f^{*}(t)  \tag{0.2}\\
y_{0}^{*}(t)=p_{1}\left(A_{0} \cos k t+\frac{B_{0}}{k} \sin k t\right)+p_{2}\left(E_{0} \cos \omega t+\frac{D_{0}}{\omega} \sin \omega t\right)+\varphi^{*}(t)
\end{gather*}
$$

where $f^{*}(t)$ and $\varphi^{*}(t)$ are particular solutions of the generating system, $A_{0}, B_{0}, E_{0}$ and $D_{0}$ are arbitrary constants

$$
p_{1}=\frac{c}{k^{2}-d}=\frac{k^{2}-a}{b}, \quad p_{2}=\frac{c}{\omega^{2}-d}=\frac{\omega^{2}-a}{b}
$$

We shall separate from (0.2) a family of periodic solutions of period $2 \pi$

$$
\begin{gather*}
x_{0}(t)=A_{0} \cos k t+\frac{B_{0}}{k} \sin k t+f^{\circ}(t)  \tag{0.3}\\
y_{0}(t)=p_{1}\left(A_{0} \cos k t+\frac{B_{0}}{k} \sin k t\right)+\varphi^{\circ}(t)
\end{gather*}
$$

Here $f^{\circ}(t)$ and $\varphi^{\circ}(t)$ represent a particular solution of period $2 \pi$ of the system (0.1) for $\mu=0$. According to [1, p. 109], the necessary and sufficient condition for the system (0.1) for $\mu=0$ to have, in the case of the resonance, the periodic solutions ( 0.3 ), is that the functions $f(t)$ and $\varphi(t)$ should satisfy the two conditions

$$
\int_{0}^{2 \pi}\left[f(\tau)+\frac{b}{k^{2}-d} \varphi(\tau)\right] \cos k \tau d \tau=0, \quad \int_{0}^{2 \pi}\left[f(\tau)+\frac{b}{k^{2}-d} \varphi(\tau)\right] \sin k \tau d \tau=0
$$

The problem consists in the search of periodic solutions of period $2 \pi$ of the system ( 0,1 ), which corresponds to the generating solution (0.3) when $\mu=0$. In [2] it was erroneously indicated that the solution (0.1) has a form analogous to the form of the solution (0.3) of the generating system. Actually it is not so. We shall determine the existence conditions of such periodic solutions of ( 0.1 ) and shall show how they can be determined.

1. In accordance with Poincare's method, initial conditions for the system ( 0.1 ) are taken in the form

$$
\begin{array}{ll}
x(0)=x_{0}(0)+b_{1}, & \dot{x}(0)=\dot{x}_{0}(0)+b_{2} \\
y(0)=y_{0}(0)+b_{3}, & \dot{y}(0)=\dot{y}_{0}(0)+b_{4} \tag{1.1}
\end{array}
$$

where the $b_{i}$ s are some quantities, vanishing for $\mu=0$. Then the solution of the system ( 0,1 ) depends upon the parameters $b_{1}, b_{2}, b_{3}, b_{4}$ and can be expanded in series of integer powers of these parameters

$$
\begin{align*}
& x(t)=x_{0}(t)+\sum_{i=1}^{4} P_{1 i}(t) b_{i}+\mu[\ldots]=0 \\
& y(t)=y_{0}(t)+\sum_{i=1}^{4} P_{2 i}(t) b_{i}+\mu[\ldots]=0 \tag{1.2}
\end{align*}
$$

The functions $P_{1 i}(t)$ and $P_{2 i}(t)$ are found by substituting the series of (1.2) in equation (0.1) and equating the coefficients of the terms
of 1 ike powers in $b_{i}$ and $\mu$. Let us introduce the notations

$$
\begin{array}{ll}
\frac{1}{p_{1}-p_{2}}\left(b_{3}-p_{8} b_{1}\right)=\beta_{1}, & \frac{1}{p_{1}-p_{2}}\left(p_{1} b_{1}-b_{8}\right)=\beta_{8}  \tag{1.3}\\
\frac{1}{p_{1}-p_{2}}\left(b_{4}-p_{8} b_{2}\right)=\beta_{2}, & \frac{1}{p_{1}-p_{2}}\left(p_{1} b_{2}-b_{4}\right)=\beta_{4}
\end{array}
$$

As a result we shall have the solution of (1.2) in the form

$$
\begin{gather*}
x(t)=x_{0}(t)+\beta_{1} \cos k t+\frac{\beta_{2}}{k} \sin k t+\beta_{8} \cos \omega t+\frac{\beta_{4}}{\omega} \sin \omega t+\mu[\ldots]  \tag{1.4}\\
y(t)=y_{0}(t)+p_{1}\left(\beta_{1} \cos k t+\frac{\beta_{2}}{k} \sin k t\right)+p_{2}\left(\beta_{8} \cos \omega t+\frac{\beta_{4}}{\omega} \sin \omega t\right)+\mu[\ldots]
\end{gather*}
$$

The initial conditions (1.1) become

$$
\begin{array}{ll}
x(0)=x_{0}(0)+\beta_{1}+\beta_{3}, & y(0)=y_{0}(0)+p_{1} \beta_{2}+p_{2} \beta_{2}  \tag{1.5}\\
\dot{x}(0)=\dot{x}_{0}(0)+\beta_{2}+\beta_{4}, & \dot{y}(0)=\dot{y}_{0}(0)+p_{1} \beta_{2}+p_{2} \beta_{4}
\end{array}
$$

As shown in $[1, p .119]$ two of the quantities $\beta_{i}$ (their number is equal to the number of arbitrary constants entering the generating solu$t i o n$ ) are analytic functions of the two others and of the parameter $\mu$, and become zero for $\mu=0$. Here $\beta_{1}$ and $\beta_{2}$ are the independent quantities and $\beta_{3}$ and $\beta_{4}$ the analytic functions of $\beta_{1}, \beta_{2}$ and $\mu$. In fact, we shall write the conditions of periodicity of the functions $x\left(t, \beta_{i}, \mu\right)$ and $\dot{x}\left(t, \beta_{i}, \mu\right)$ in accordance with (1.4) and (1.5)

$$
\begin{gather*}
\beta_{8}(\cos 2 \pi \omega-1)+\frac{\beta_{4}}{\omega} \sin 2 \pi \omega+\theta_{1}\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)=0  \tag{1.6}\\
-\beta_{3} \omega \sin 2 \pi \omega+\beta_{4}(\cos 2 \pi \omega-1)+\theta_{2}\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)=0
\end{gather*}
$$

The functions $\theta_{1}$ and $\theta_{2}$ are some analytic functions of $\beta_{1}, \beta_{2}, \beta_{3}$, $\beta_{4}$ and $\mu$. The conditions of periodicity of the functions $y\left(t, \beta_{i}, \mu\right)$ and $\dot{y}\left(t, \beta_{i}, \mu\right)$ differ from the conditions (1.6) only by a factor $p_{2}$. Since $2(1-\cos 2 \pi \omega) \neq 0$, the equations (1.6) can be solved with respect to $\beta_{3}$ and $\beta_{4}$, and yield the analytic functions

$$
\beta_{2}=\psi_{1}\left(\beta_{1}, \beta_{2}, \mu\right), \quad \beta_{4}=\psi_{2}\left(\beta_{1}, \beta_{2}, \mu\right)
$$

which become zero for $\mu=0$.
Thus, the solution of (1.4) is represented by the series

$$
\begin{align*}
x(t)= & x_{0}(t)+\beta_{1} \cos k t+\frac{\beta_{2}}{k} \sin k t+\psi_{1} \cos \omega t+\frac{\psi_{2}}{\omega} \sin \omega t+ \\
& +\sum_{n=1}^{\infty}\left[C_{n}(t)+\frac{\partial C_{n}(t)}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}(t)}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n} \tag{1.7}
\end{align*}
$$

$$
\begin{gather*}
y(t)=y_{0}(t)+p_{1}\left(\beta_{1} \cos k t+\frac{\beta_{2}}{k} \sin k t\right)+p_{2}\left(\psi_{1} \cos \omega t+\frac{\psi_{2}}{\omega} \sin \omega t\right)+ \\
+\sum_{n=1}^{\infty}\left[H_{n}(t)+\frac{\partial H_{n}(t)}{\partial A_{n}} \beta_{1}+\frac{\partial H_{n}(t)}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n} \tag{1.7}
\end{gather*}
$$

The functions $C_{n}(t)$ and $H_{n}(t)$ are determined as in [2]

$$
C_{n}(t)=C_{n}{ }^{(1)}(t)+C_{n}{ }^{(2)}(t), \quad H_{n}(t)=p_{1} C_{n}{ }^{(1)}(t)+p_{2} C_{n}{ }^{(2)}(t)
$$

where

$$
\begin{gather*}
C_{n}{ }^{(1)}(1)=\frac{1}{\omega^{2}-k^{2}} \int_{0}^{t}\left[\frac{d-k^{2}}{k} F_{n}(\tau)-\frac{b}{k} \Phi_{n}(\tau)\right] \sin k(t-\tau) d \tau  \tag{1.8}\\
C_{n}{ }^{(2)}(t)=-\frac{1}{\omega^{2}-k^{2}} \int_{0}^{t}\left[\frac{d-\omega^{2}}{\omega} F_{n}(\tau)-\frac{b}{\omega} \Phi_{n}(\tau)\right] \sin \omega(t-\tau) d \tau
\end{gather*}
$$

Here

$$
F_{n}(t)=\frac{1}{(n-1)!}\left(\frac{d^{n-1} F}{d \mu^{n-1}}\right)_{\beta_{i}=\mu=0^{\prime}} \quad \Phi_{n}(t)=\frac{1}{(n-1)!}\left(\frac{d^{n-1} \Phi}{d \mu^{n-1}}\right)_{\beta_{i}=\mu=0}
$$

Expanding $F_{n}(t)$ and $\Phi_{n}(t)$ in Fourier series and calculating the integrals of (1.8), it is easy to show that $C_{n}{ }^{(2)}(t)$ has for components a periodic function of period $2 \pi$ and the harmonics of $\sin \omega t$ and $\cos \omega t$ with some coefficients. In other words, $C_{n}{ }^{(2)}(t)$ is not a periodic function of period $2 \pi$, since $\omega$ is not an integer.

The solution of (1.7) is represented as

$$
x(t)=x_{0}(t)+x^{(1)}(t)+x^{(2)}(t), \quad y(t)=y_{0}(t)+p_{1} x^{(1)}(t)+p_{9} x^{(2)}(t)
$$

where
$x^{(1)}(t)=\beta_{1} \cos k t+\frac{\beta_{2}}{k} \sin k t+\sum_{n=1}^{\infty}\left[C_{n}{ }^{(1)}(t)+\frac{\partial C_{n}{ }^{(1)}(t)}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}{ }^{(1)}(t)}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}$
$x^{(2)}(t)=\psi_{1} \cos \omega t+\frac{\psi_{2}}{\omega} \sin \omega t+\sum_{n=1}^{\infty}\left[C_{n}{ }^{(2)}(t)+\frac{\partial C_{n}{ }^{(2)}(t)}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}{ }^{(2)}(t)}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}$

The necessary and sufficient condition for obtaining a periodic solution of period $2 \pi$ for ( 1.9 ), is that the conditions of periodicity of the functions $x^{(1)}(t)$ and $x^{(2)}(t)$ be satisfied

$$
\begin{array}{cc}
x^{(1)}(2 \pi)=\beta_{1}, & \dot{x}^{(1)}(2 \pi)=\beta_{2} \\
x^{(2)}(2 \pi)=\psi_{1}\left(\beta_{1}, \beta_{2}, \mu\right), & \dot{x}^{(2)}(2 \pi)=\psi_{2}\left(\beta_{1}, \beta_{2}, \mu\right) \tag{1.12}
\end{array}
$$

Thus, the problem has reduced to the construction of the periodic functions $x^{(1)}(t)$ and $x^{(2)}(t)$ of period $2 \pi$.
2. The construction of the function $x^{(1)}(t)$ is analogous to the construction of the periodic solution of a quasilinear nonautonomous system with one degree of freedom $[3,4]$. Thus, from the conditions of periodicity (1.11) it is possible to determine the amplitudes $A_{0}$ and $B_{0}$ of the generating function and the quantities $\beta_{1}$ and $\beta_{2}$ in the form of a series of integer or fractional powers of $\mu$, depending upon the multiplicity of the roots of the equations of the basic amplitudes $C_{1}{ }^{(1)}(2 \pi)=0$ and $\dot{C}_{1}{ }^{(1)}(2 \pi)=0$.
3. The construction of the function $x^{(2)}(t)$ is made according to (1.10) if the quantities $\psi_{1}$ and $\Psi_{2}$ are determined. Therefore, by virtue of the analicity of $\psi_{1}$ and $\psi_{2}$ with respect to $\beta_{1}, \beta_{2}$ and $\mu_{\text {, }}$ and al so since a differentiation with respect to $\beta_{1}$ and $\beta_{2}$ can be replaced by a differentiation with respect to $A_{0}$ and $B_{0}$, we have

$$
\begin{equation*}
\Psi_{j}\left(\beta_{1}, \beta_{2}, \mu\right)=\sum_{n=1}^{\infty}\left[\Psi_{j n}+\frac{\partial \Psi_{j n}}{\partial A_{0}} \beta_{1}+\frac{\partial \Psi_{j n}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n} \quad(j=1,2) \tag{3.1}
\end{equation*}
$$

The conditions (1.12) of periodicity of the functions $x^{(2)}(t)$ and $\dot{x}^{(2)}(t)$ are used for the determination of $\Psi_{j n}$

$$
\begin{array}{r}
\Psi_{1 n}(\cos 2 \pi \omega-1)+\frac{\Psi_{2 n}}{\omega} \sin 2 \pi \omega+C_{n}^{(2)}(2 \pi)=0 \\
-\omega \Psi_{1 n} \sin 2 \pi \omega+\Psi_{2 n}(\cos 2 \pi \omega-1)+\dot{C}_{n}^{(2)}(2 \pi)=0
\end{array}
$$

Whereupon
$\Psi_{1 n}=\frac{1}{2}\left[C_{n}{ }^{(2)}(2 \pi)+\frac{\dot{C}_{n}^{(2)}(2 \pi)}{\omega} \cot \pi \omega\right], \quad \Psi_{2 n}=\frac{1}{2}\left[\dot{C}_{n}{ }^{(2)}(2 \pi)-\omega C_{n}{ }^{(2)}(2 \pi) \cot \pi \omega\right]$
Thus, $\psi_{1 n}$ and $\psi_{2 n}$ are calculated from the formulas (3.2) once the functions $C_{n}^{(2)}(t)$ and $\dot{C}_{n}^{(2)}(t)$ are known. Knowing $\Psi_{1 n}$ and $\Psi_{2 n}$, we determine on the basis of (3.1) the quantities $\Psi_{j}\left(\beta_{1}, \beta_{2}, \mu\right)$ and also the function $x^{(2)}(t)$ from the second formula (1.10).

In order to determine the functions $C_{n}{ }^{(1)}(t)$ and $C_{n}{ }^{(2)}(t)$ it is indispensable to know $F_{n}(t)$ and $\Phi_{n}(t)$. We shall denote

$$
\begin{gathered}
C_{n}^{*(2)}(t)=C_{n}^{(2)}(t)+\Psi_{1 n} \cos \omega t+\frac{\Psi_{2 n}}{\omega} \sin \omega t \\
C_{n}^{*}(t)=C_{n}^{(1)}(t)+C_{n}^{*(2)}(t), H_{n}^{*}(t)=p_{1} C_{n}^{(1)}(t)+p_{2} C_{n}^{*(2)}(t)
\end{gathered}
$$

By verification we determine that the functions $C_{n}{ }^{*(2)}(t)$ are periodic of period $2 \pi$. The expressions for the functions $F_{n}(t)$ and $\omega_{n}(t)$ are obtained from the corresponding expressions of [2] replacing $C_{n}^{n}(t), \dot{C}_{n}(t), H_{n}(t)$ and $\dot{H}_{n}(t)$ by $C_{n}{ }^{*}(t), \dot{C}_{n}^{*}(t), H_{n}^{*}(t)$ and $\dot{H}_{n}^{*}(t)$.
4. If the quantities $\beta_{1}$ and $\beta_{2}$ are determined by series $[3]$ of integer powers of the parameter $\mu$

$$
\beta_{1}=\sum_{n=1}^{\infty} A_{n} \mu^{n}, \quad \beta_{2}=\sum_{n=1}^{\infty} B_{n} \mu^{n}
$$

then the functions $x^{(1)}(t)$ and $x^{(2)}(t)$, and consequently the solution $x(t)$ and $y(t)$ are series of integer powers of the parameter $\mu$

$$
x^{(1)}(t)=\mu x_{1}^{(1)}(t)+\mu^{2} x_{2}^{(1)}(t)+\ldots, \quad x^{(2)}(t)=\mu x_{1}^{(2)}(t)+\mu^{2} x_{2}^{(2)}(t)+\ldots
$$

We shall determine the expressions of the first two functions

$$
x_{1}^{(1)}(t)=A_{1} \cos k t+\frac{B_{1}}{k} \sin k t+C_{1}^{(1)}(t)
$$

$$
x_{2}{ }^{(1)}(t)=A_{2} \cos k t+\frac{B_{2}}{k} \sin k t+C_{2}^{(1)}(t)+\frac{\partial C_{1}^{(1)}(t)}{\partial A_{0}} A_{1}+\frac{\partial C_{1}^{(1)}(t)}{\partial B_{0}} B_{1} \quad \text { etc. }
$$

$$
x_{1}^{(2)}(t)=C_{1}^{*}{ }^{(2)}(t), x_{2}^{(2)}(t)=C_{2}^{*(2)}(t)+\frac{\partial C_{1}^{*(2)}(t)}{\partial A_{0}} A_{1}+\frac{\partial C_{1}{ }^{*(2)}(t)}{\partial B_{0}} B_{1} \text { etc. }
$$

If the equations of the basic amplitudes have double roots, then the quantities $\beta_{1}$ and $\beta_{2}$ are sought for in the form of series in the powers of $\mu$ and $\mu^{1 / 2}$. The function $x^{(1)}(t)$ is found in a manner similar to that used in $[4]$ and $x^{(2)}(t)$, as was shown in Section 3.

The method of construction of the periodic solutions can be extended to systems with $n$ degrees of freedom. For instance, in the case of oscillations of same frequencies, the construction of the periodic solutions of period $2 \pi$ breaks down into $n$ separate problems of successive determination of periodic functions $x^{(1)}(t), \ldots, x^{(n)}(t)$. Thus the problew of the construction of $x^{(1)}(t)$ is similar to the search of a periodic solution of a system with one degree of freedom, and the others are found by the method of Section 3 .

Example. The following system of equations is considered

$$
\ddot{x}+y=\cos 2 t+\mu\left(1-x^{2}\right) \dot{x}, \quad \ddot{y}-\frac{1}{4} x+\frac{5}{4} y=-\frac{11}{4} \cos 2 t+\mu \dot{y}
$$

The fundamental equation has for roots $\pm i$ and $\pm 1 / 2 i$. Subharmonic solutions of the system are sought. We have $p_{1}=1$ and $p_{2}=1 / 4$ The generating solution depends upon two arbitrary constants

$$
x_{0}=A_{0} \cos t+B_{0} \sin t, \quad y_{0}=A_{0} \cos t+B_{0} \sin t+\cos 2 t
$$

The equations of the basic amplitudes

$$
A_{0}\left[3+\frac{1}{4}\left(A_{0}^{2}+B_{0}^{2}\right)\right]=0, \quad B_{0}\left[3+\frac{1}{4}\left(A_{0}^{2}+B_{0}^{2}\right)\right]=0
$$

have the obvious solution $A_{0}=B_{0}=0$. Using the construction procedure of periodic solutions described above, we obtain the first approximation

$$
\begin{gathered}
x(t)=\left[\frac{16}{9}\left(\frac{\pi}{3}-1\right) \sin t+\frac{8}{5} \sin 2 t\right] \mu \\
y(t)=\cos 2 t+\left[\frac{16}{9}\left(\frac{\pi}{3}-1\right) \sin t+\frac{16}{15} \sin 2 t\right] \mu
\end{gathered}
$$

## BIBLIOGRAPHY

1. Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Some Problems of the Theory of Nonlinear Oscillations). Gostekhizdat. 1956.
2. Plotnikova, G.V., 0 postroenii periodicheskikh reshenii neavtonomnoi kvazilineinoi sistemy s dvumia stepeniami svobody (On the construction of periodic solutions of a nonautonomous quasilinear system with two degrees of freedom). PMM Vol. 24, No. 5, 1960.
3. Proskuriakov, A. P., Kolebaniia kvazilineinykh neavtonomnykh sistem s odnoi stepen' iu svobody vblizi rezonansa (Oscillations of quasilinear systems with one degree of freedom near resonance). PMM Vol. 23, No. 5, 1959.
4. Plotnikova, G.V., 0 postroenii periodicheskikh reshenii neavtonomnoi kvazilineinoi sistemy s odnoi stepen' iu svobody vblizi rezonansa v sluchae dvukratnykh kornei uravnenii osnovnykh amplitud (On the construction of periodic solutions of a nonautonomous quasilinear system with one degree of freedom near resonance in the case of double roots of the equation of fundamental amplitudes). PMM Vol. 26, No. 4, 1962.
